dm_la Module

Fortran 95 wrapper routines around LAPACK (double precision), ported from LAPACK95.


Uses

  • module~~dm_la~~UsesGraph module~dm_la dm_la module~dm_kind dm_kind module~dm_la->module~dm_kind iso_fortran_env iso_fortran_env module~dm_kind->iso_fortran_env

Used by

  • module~~dm_la~~UsedByGraph module~dm_la dm_la module~dm_transform dm_transform module~dm_transform->module~dm_la module~dmpack dmpack module~dmpack->module~dm_la module~dmpack->module~dm_transform

Interfaces

public interface dm_la_gels

Generic LAPACK gels() subroutine for dgels() and dgels1().

  • public subroutine dm_la_dgels(a, b, trans, info)

    LA_GELS computes the minimum-norm least squares solution to one or more real or complex linear systems of the form Ax = b, A^Tx = b or A^H*x = b using a QR or LQ factorization of A. Matrix A is rectangular assumed to be of full rank. The vectors b and corresponding solution vectors x are the columns of matrices denoted B and X, respectively.

    LAPACK95 interface driver routine (version 3.0) -- UNI-C, Denmark; Univ. of Tennessee, USA; NAG Ltd., UK September, 2000

    Arguments

    Type IntentOptional Attributes Name
    real(kind=r8), intent(inout) :: a(:,:)
    real(kind=r8), intent(inout) :: b(:,:)
    character(len=1), intent(in), optional :: trans
    integer, intent(out), optional :: info
  • public subroutine dm_la_dgels1(a, b, trans, info)

    LAPACK95 interface driver routine (version 3.0) -- UNI-C, Denmark; Univ. of Tennessee, USA; NAG Ltd., UK September, 2000

    Arguments

    Type IntentOptional Attributes Name
    real(kind=r8), intent(inout) :: a(:,:)
    real(kind=r8), intent(inout) :: b(:)
    character(len=1), intent(in), optional :: trans
    integer, intent(out), optional :: info

public interface dm_la_gelsd

Generic LAPACK gelsd() subroutine for dgelsd() and dgelsd1().

  • public subroutine dm_la_dgelsd(a, b, rank, s, rcond, info)

    LA_GELSS and LA_GELSD compute the minimum-norm least squares solution to one or more real or complex linear systems A*x = b using the singular value decomposition of A. Matrix A is rectangular and may be rank-deficient. The vectors b and corresponding solution vectors x are the columns of matrices denoted B and X, respectively.

    The effective rank of A is determined by treating as zero those singular values which are less than RCOND times the largest singular value. In addition to X, the routines also return the right singular vectors and, optionally, the rank and singular values of A.

    LA_GELSD combines the singular value decomposition with a divide and conquer technique. For large matrices it is often much faster than LA_GELSS but uses more workspace.

    LAPACK95 interface driver routine (version 3.0) -- UNI-C, Denmark; Univ. of Tennessee, USA; NAG Ltd., UK September, 2000

    Arguments

    Type IntentOptional Attributes Name
    real(kind=r8), intent(inout) :: a(:,:)
    real(kind=r8), intent(inout) :: b(:,:)
    integer, intent(out), optional :: rank
    real(kind=r8), intent(out), optional, target :: s(:)
    real(kind=r8), intent(in), optional :: rcond
    integer, intent(out), optional :: info
  • public subroutine dm_la_dgelsd1(a, b, rank, s, rcond, info)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=r8), intent(inout) :: a(:,:)
    real(kind=r8), intent(inout) :: b(:)
    integer, intent(out), optional :: rank
    real(kind=r8), intent(out), optional, target :: s(:)
    real(kind=r8), intent(in), optional :: rcond
    integer, intent(out), optional :: info

Subroutines

public subroutine dm_la_dgels(a, b, trans, info)

LA_GELS computes the minimum-norm least squares solution to one or more real or complex linear systems of the form Ax = b, A^Tx = b or A^H*x = b using a QR or LQ factorization of A. Matrix A is rectangular assumed to be of full rank. The vectors b and corresponding solution vectors x are the columns of matrices denoted B and X, respectively.

Read more…

Arguments

Type IntentOptional Attributes Name
real(kind=r8), intent(inout) :: a(:,:)
real(kind=r8), intent(inout) :: b(:,:)
character(len=1), intent(in), optional :: trans
integer, intent(out), optional :: info

public subroutine dm_la_dgels1(a, b, trans, info)

LAPACK95 interface driver routine (version 3.0) -- UNI-C, Denmark; Univ. of Tennessee, USA; NAG Ltd., UK September, 2000

Read more…

Arguments

Type IntentOptional Attributes Name
real(kind=r8), intent(inout) :: a(:,:)
real(kind=r8), intent(inout) :: b(:)
character(len=1), intent(in), optional :: trans
integer, intent(out), optional :: info

public subroutine dm_la_dgelsd(a, b, rank, s, rcond, info)

LA_GELSS and LA_GELSD compute the minimum-norm least squares solution to one or more real or complex linear systems A*x = b using the singular value decomposition of A. Matrix A is rectangular and may be rank-deficient. The vectors b and corresponding solution vectors x are the columns of matrices denoted B and X, respectively.

Read more…

Arguments

Type IntentOptional Attributes Name
real(kind=r8), intent(inout) :: a(:,:)
real(kind=r8), intent(inout) :: b(:,:)
integer, intent(out), optional :: rank
real(kind=r8), intent(out), optional, target :: s(:)
real(kind=r8), intent(in), optional :: rcond
integer, intent(out), optional :: info

public subroutine dm_la_dgelsd1(a, b, rank, s, rcond, info)

Arguments

Type IntentOptional Attributes Name
real(kind=r8), intent(inout) :: a(:,:)
real(kind=r8), intent(inout) :: b(:)
integer, intent(out), optional :: rank
real(kind=r8), intent(out), optional, target :: s(:)
real(kind=r8), intent(in), optional :: rcond
integer, intent(out), optional :: info